首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26256篇
  免费   728篇
  国内免费   981篇
  2023年   135篇
  2022年   208篇
  2021年   276篇
  2020年   253篇
  2019年   319篇
  2018年   384篇
  2017年   258篇
  2016年   333篇
  2015年   676篇
  2014年   1914篇
  2013年   1857篇
  2012年   1828篇
  2011年   2462篇
  2010年   2156篇
  2009年   1176篇
  2008年   1207篇
  2007年   1111篇
  2006年   1047篇
  2005年   947篇
  2004年   849篇
  2003年   868篇
  2002年   638篇
  2001年   433篇
  2000年   414篇
  1999年   461篇
  1998年   456篇
  1997年   430篇
  1996年   390篇
  1995年   459篇
  1994年   421篇
  1993年   373篇
  1992年   378篇
  1991年   310篇
  1990年   268篇
  1989年   267篇
  1988年   248篇
  1987年   210篇
  1986年   173篇
  1985年   224篇
  1984年   272篇
  1983年   201篇
  1982年   219篇
  1981年   109篇
  1980年   120篇
  1979年   89篇
  1978年   35篇
  1977年   33篇
  1976年   25篇
  1974年   10篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
62.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   
63.
64.
65.
Cells employ pro-survival and pro-adaptive pathways to cope with different forms of environmental stress. When stress is excessive, and the damage caused by it is unsustainable, cells engage pro-death pathways, which are in place to protect the host from the deleterious effects of harmed cells. Two important pathways that determine the balance between survival and death of stressed cells are the integrated stress response (ISR) and the mammalian target of rapamycin (mTOR), both of which converge at the level of mRNA translation. The two pathways have established avenues of communication to control their activity and determine the fate of stressed cells in a context-dependent manner. The functional interplay between the ISR and mTOR may have significant ramifications in the development and treatment of human diseases such as diabetes, neurodegeneration and cancer.  相似文献   
66.
Cultural adherent human mononuclear cells produce factor(s) which stimulate the release of calcium from new-born mouse calvaria in organ culture. This stimulation of bone resorption is accompanied by an inhibition of the incorporation of [3H]proline into collagen which is independent of increased prostaglandin production by the bone. When human osteoblast-like cells are treated with conditioned medium from human mononuclear cells, collagen accounts for a decreased proportion of the protein synthesised. This effect on matrix synthesis is not accompanied by an inhibitory action of the monocyte-conditioned medium preparations on net cell proliferation. In human osteoblast-like cell cultures, partially purified human interleukin 1 also inhibits the production of the bone-specific protein osteocalcin in a dose-dependent fashion. These observations are consistent with the hypothesis that products of human monocytes similar to, or identical with, human interleukin 1 may be important regulators of bone metabolism and may contribute to the bone loss seen in diseases such as chronic rheumatoid arthritis.  相似文献   
67.
Abstract We have analyzed the sequence downstream of rpoN from Zcinetobacter calcoaceticus and identified an open reading frame encoding a protein with high similarity to UDP- N -acetylgucosamine 1-carboxyvinyl-transferase (MurZ). Multicopy plasmids encoding this enzyme conferred phosphomycin resistance to A. calcoaceticus . The polar effect of a rpoN mutation on the phosphomycin resistance level suggests that murZ is, in part, cotranscribed with rpoN . These observations confirm that A. calcoaceticus represents the first exceptin from a conserved genetic context of rpoN observed in several other Gram-negative bacteria.  相似文献   
68.
The gene for pilin, the monomeric protein subunit from which the pilus of Bacteroides nodosus is constructed, has been isolated. Isolation was achieved by cloning the fragmented genome of B. nodosus in Escherichia coli RR1 using the plasmid vector pBR322. Pilin-producing colonies were identified by screening with a colony immunoassay using antiserum from a sheep immunized against purified pili from B. nodosus strain 198, and were further characterized by immunoblot analysis. Final confirmation of the presence of the pilin gene was by nucleotide sequence data which translated to the known pilin amino acid sequence.  相似文献   
69.
The region of mitochondrial DNA corresponding to the intron mutant M6-200 in Saccharomyces cerevisiae D273-10B has been isolated, and the nucleotide sequence of a 519 bp RsaI fragment has been determined. Three nucleotide substitutions were found at nucleotides +2650 (G----T), +2668 (G----A) and +2798 (A----G), all within the genetically defined location in the gene. Particular significance can be attributed to the first two changes (+2650 and +2668), that can be genetically isolated from the third substitution and, in addition, alter conserved sequence features detected in a study [(1982) Biochimie 64, 867-881] of fungal mitochondrial introns.  相似文献   
70.
Summary Collagen genes appear to have been assembled by the tandem repetition of homologous primary (9 base pair), secondary (54 base pair), and tertiary (702 base pair) modules. In vertebrate interstitial collagen genes many of the secondary modules are separated by introns, but in invertebrate collagen genes the non-coding sequences lie near the ends of supposed tertiary modules and are therefore about 702 (54×13) base pairs apart. The genes for vertebrate interstitial collagens (types I–III) seem to have been constructed by the tandem repetition of five tertiary modules, three of which were subsequently shortened by internal deletions. This shortening of the gene resulted in the non-integral relationship between the period of the fibrils and the length of the molecules of vertebrate collagens, and was therefore responsible for the mechanical properties of the completed product. Comparisons of the amino acid sequences of various collagens indicate that the main types of collagen evolved about 800–900 million years ago, a date that agrees well with the fossil record of primitive Metazoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号